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Abstract

Many Internet services collect a flurry of data from their
users. Privacy policies are intended to describe the ser-
vices’ privacy practices. However, due to their length
and complexity, reading privacy policies is a challenge
for end users, government regulators, and companies.
Natural language processing holds the promise of help-
ing address this challenge. Specifically, we focus on
comparing the practices described in privacy policies to
the practices performed by smartphone apps covered by
those policies. Government regulators are interested in
comparing apps to their privacy policies in order to de-
tect non-compliance with laws, and companies are in-
terested for the same reason.
We frame the identification of privacy practice state-
ments in privacy policies as a classification problem,
which we address with a three-tiered approach: a pri-
vacy practice statement is classified based on a data
type (e.g., location), party (i.e., first or third party), and
modality (i.e., whether a practice is explicitly described
as being performed or not performed). Privacy policies
omit discussion of many practices. With negative F1
scores ranging from 78% to 100%, the performance re-
sults of this three-tiered classification methodology sug-
gests an improvement over the state-of-the-art.
Our NLP analysis of privacy policies is an integral part
of our Mobile App Privacy System (MAPS), which
we used to analyze 1,035,853 free apps on the Google
Play Store. Potential compliance issues appeared to be
widespread, and those involving third parties were par-
ticularly common.

1 Introduction
In the absence of a general privacy law in the United States,
the Federal Trade Commission (FTC) is stepping into the
void and is creating a “common law of privacy” (Solove and
Hartzog 2014), which, to a large extent, is based on the no-
tice and choice paradigm. In this paradigm, users are noti-
fied of a service’s privacy practices and are given a choice
to consent to those practices; if the user does not consent
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to the service’s practices, they are not allowed to use the
service. Natural language privacy policies are intended to
notify users of privacy practices. Privacy policies are com-
plex and lengthy documents: they are often vague, internally
contradictory, offer little protection, or are silent on critical
points (Marotta-Wurgler 2015). While there are other forms
of privacy notification, such as mobile app permission re-
quests, these are not a replacement for privacy policies; per-
mission requests are generally insufficient to express what
users agree to with sufficient clarity. Machine-readable pri-
vacy policies, such as P3P policies (Cranor et al. 2002),
were suggested as replacements for natural language privacy
policies. However, none of these replacements have gained
widespread adoption. Thus, despite their shortcomings, nat-
ural language privacy policies are the standard instrument
for effectuating notice and choice.

The FTC engages in enforcement actions against opera-
tors of apps that are non-compliant with their privacy poli-
cies. Such non-compliance is considered an unfair or de-
ceptive act or practice in or affecting commerce in viola-
tion of Section 5(a) of the FTC Act (FTC 2014). In order
to detect whether an app is potentially not compliant with
its privacy policy, we built the Mobile App Privacy System
(MAPS) (Zimmeck et al. 2019). MAPS is of interest to both
government regulators and companies. For government reg-
ulators, MAPS can identify potential compliance issues, re-
ducing the cost of investigations. For companies, MAPS can
help them ensure that their privacy policies fully describe
their apps’ practices.

Our focus in this article is on the natural language analy-
sis component of MAPS. We provide a detailed description
of the design and performance of our three-tiered classifier
design for identifying privacy practice statements (§ 3). We
also provide a summary of findings from our recent scan of
over 1 million mobile apps on the Google Play Store (§ 4).
In this large scale analysis of policies and apps, we found
widespread evidence of potential privacy compliance issues.
In particular, it appears that many apps’ privacy policies do
not sufficiently disclose identifier and location data access
practices performed by ad networks and other third parties.

2 Related Work
Our work leverages earlier studies on the automated analysis
of privacy policy text as well as examinations of privacy in



the Android ecosystem.

Automated Privacy Policy Text Analysis
Privacy policies are the main instruments for disclosing and
describing apps’ or other software’s privacy practices. How-
ever, the sheer volume of text an individual user would need
to read for the software he or she is using makes privacy poli-
cies impractical for meaningfully conveying privacy prac-
tices (McDonald and Cranor 2008). Some research has fo-
cused on the structure of privacy policies. For example, the
problem of identifying policy sections relating to different
topics (Ramanath et al. 2014; Liu et al. 2018). Sathyendra
et al. classified advertising opt outs and similar consumer
choice options on websites (Sathyendra et al. 2017). Other
work has focused on building tools for users. Using a sim-
ple naive Bayes classifier, Zimmeck and Bellovin provided
a browser extension for identifying common privacy prac-
tices in policy text (Zimmeck and Bellovin 2014). Tesfay et
al. used a machine learning-based approach to identify text
addressing various GDPR provisions (Tesfay et al. 2018).
Harkous et al. developed PriBot, a chatbot for answering
questions about privacy policies (Harkous et al. 2018). Dif-
ferent from those studies, however, our domain consists of
app policies instead of website policies.

Various studies analyzed privacy policies in specific do-
mains. Cranor et al. evaluated financial institutions’ privacy
notices, which, in the US, nominally adhere to a model pri-
vacy form released by federal agencies (Cranor, Leon, and
Ur 2016). They found clusters of institutions sharing con-
sumer data more often than others. They also found institu-
tions that do not follow the law, by disallowing consumers
to limit such sharing. Further, Zhuang et al. aimed to help
university researchers by automating enforcement of privacy
policies of Institutional Review Boards (Zhuang et al. 2018).
Auditing the disclosure of third party data collection prac-
tices on 200,000 website privacy policies, Libert found that
the names of third parties are usually not explicitly disclosed
in website privacy policies (Libert 2018). We focus on clas-
sifying first and third party access of contact, location, and
unique identifier data in smartphone apps’ privacy policies.

Android Privacy Studies
We are extending the emerging domain of verifying pri-
vacy practices of mobile apps against privacy requirements,
notably privacy policies. The closest related work to ours
analyzed the practices of 17,991 Android apps and de-
termined whether those with a privacy policy adhered to
it (Zimmeck et al. 2017). Several other studies have also
compared privacy policies to apps’ code (Yu et al. 2016;
Slavin et al. 2016). Going beyond this work, our system is
capable of large-scale analyses, which we demonstrate by
an analysis of 1,035,853 free apps on the Google Play Store.
Additionally, our analysis evaluates compliance issues at a
finer granularity. This advance is notable because the access
of coarse-grained location data (e.g., city) is far less privacy-
invasive than the access of fine-grained data (e.g., latitude
and longitude).

We are motivated to study privacy in the Android ecosys-
tem due to numerous findings of potentially non-compliant

privacy practices. Story et al. studied the metadata of over a
million apps on the Play Store and found that many apps lack
privacy policies, even when developers describe their apps
as collecting users’ information (Story, Zimmeck, and Sadeh
2018). Analyzing close to a million Android web apps (i.e.,
Android apps that use a WebView), Mutchler et al. found
that 28% of those have at least one vulnerability, such as
data leakage through overridden URL loads (Mutchler et al.
2015). Differences in how apps are treating sensitive data
were used to identify malicious apps (Avdiienko et al. 2015).
More recently, AppCensus revealed that many Android apps
collect persistent device identifiers to track users, which
is not allowed for advertising purposes according to the
Google Play Developer Program Policy (Reyes et al. 2018;
Google 2018b). The observation of 512 popular Android
apps over eight years of version history by Ren et al. came
to the conclusion that an important factor for higher privacy
risks over time is the increased number of third party do-
mains receiving personally identifiable information (Ren et
al. 2018). In line with these observations, it is one of our
goals in this study to examine apps’ third party practices in
the Android ecosystem.

3 Analysis Techniques
Our Mobile App Privacy System (MAPS) is comprised of
separate modules for the analysis of privacy policies and
apps. Our system compares the policy and app analyses in
order to identify potential compliance issues.

Privacy Practices
Our system analyzes privacy practices. A privacy practice,
or simply practice, describes a behavior of an app that
can have privacy implications. Table 3 contains the list of
practices we consider in our model.1 We account for the
fact that disclosures found in privacy policies can vary in
specificity. For instance, for the access of location data our
model includes practices that pertain to location in general
(i.e., Location) as well as more specific practices that ex-
plicitly identify the type of access (i.e., Location Cell
Tower, Location GPS, and Location WiFi). Our
model distinguishes between first party access, where data
is accessed by the code of the app itself, and third party ac-
cess, where data is accessed by advertising or other third
party libraries. Finally, our model also distinguishes between
a policy describing the performance of a practice (e.g., “We
access your location information.”) and the description that
a practice is not performed (e.g., “We do not access your
location information.”). When access is neither explicitly
described nor explicitly denied, neither modality classifier
flags the statement. Note that a given text fragment can refer
to multiple practices.

1In preliminary tests we also considered city, ZIP code, postal
address, username, password, ad ID, address book, Bluetooth, IP
address (identifier and location), age, and gender practices. How-
ever, we ultimately decided against further pursuing those as we
had insufficient data, unreliable annotations, or difficulty identify-
ing a corresponding API for the app analysis.



Privacy Policy Analysis
We characterize the detection of privacy practice descrip-
tions in privacy policy text as a classification problem.

Dataset We used the APP-350 corpus of 350 annotated
mobile app privacy policies to train and test our classi-
fiers (Zimmeck et al. 2019).2 The corpus’s policies were se-
lected from the most popular apps on the Google Play Store.
The policies were annotated by legal experts using a set of
privacy practice annotation labels. As they were annotating
the policies, the experts also identified the policy text frag-
ments corresponding to the practice annotation labels they
applied. All policies were comprehensively annotated. Con-
sequently, it is assumed that all unannotated portions of text
do not describe any of the practices and can be used as train-
ing, validation, and test data to detect the absence of state-
ments on respective practices.

We randomly split the annotated privacy policies into
training (n = 188), validation (n = 62), and test (n = 100)
sets. We used the training and validation sets to develop our
classifiers. The test set was set aside in order to prevent over-
fitting. We did not calculate performance using the test set
until after we finished developing our classifiers.

Classification Task The goal of the classification task is
to assign annotation labels to policy segments, that is, struc-
turally related parts of policy text that loosely correspond to
paragraphs (Wilson et al. 2016; Liu et al. 2018). We focus
on segments instead of entire policies to make effective use
of the annotated data and to identify the specific policy text
locations that describe a certain practice.

The infrequent occurrence of certain types of statements
makes the training of classifiers for some practices more
challenging. In particular, statements on third party prac-
tices and statements explicitly denying that activities are
performed are rare. For example, our training set only in-
cludes 7 segments saying that Location Cell Tower
information is not accessed by third parties. To address this
challenge, we decompose the classification problem into
three subproblems, that is, classifying (1) data types (e.g.,
Location), (2) parties (i.e., 1stParty or 3rdParty)3,
and (3) modalities (i.e., whether a practice is explicitly
described as being performed or not performed). For ex-
ample, the Location Cell Tower 3rdParty Not
Performed classification will be assigned to a segment
if the Location Cell Tower, 3rdParty, and Not
Performed classifiers all return a positive result for the
segment.

The decomposition of the classification task allows for
an economic use of annotated data. If the subproblems
were tackled all at once, 68 monolithic classifiers would be
needed, most of which would have to be trained on fewer
than 100 positive training samples. By dividing the problem,
only 22 classifiers are needed (18 “data type”, 2 “party”,

2The dataset is available at https://data.usableprivacy.org.
3Note that the Single Sign On and Single Sign On:

Facebook practices do not use a party classifier, as all data is
exchanged between the app developer as first party and the SSO
provider as third party.

Figure 1: By decomposing the classification task into three
subproblems more positive training samples are available
than for monolithic classifiers.

and 2 “modality” classifiers). These classifiers have a much
higher number of positive samples available for training, as
shown in Figure 1.

Preprocessing As classifier performance depends on ade-
quate preprocessing of policy text as well as domain-specific
feature engineering, we normalize whitespace and punctua-
tion, remove non-ASCII characters, and lowercase all pol-
icy text. Because stemming did not lead to performance im-
provements, we are omitting it. In order to run our classifiers
on the most relevant set of features, we use an optional pre-
processing step of sentence filtering. Based on a grid search,
in cases where it improves classifier performance, we re-
move a segment’s sentences from further processing if they
do not contain keywords related to the classifier in ques-
tion (Zimmeck et al. 2017). For example, the Location
classifier is not trained on sentences which only describe
cookies.

Vectorizing Prior to training, we generate vector repre-
sentations of the segments. Specifically, we take the union
of a TF-IDF vector and a vector of manually crafted fea-
tures. Our TF-IDF vector is created using the TfidfVector-
izer (scikit-learn developers 2016a) configured with English
stopwords (stop words=’english’), unigrams and bi-
grams (ngram range=(1, 2)), and binary term counts
(binary=True). This configuration is similar to what was
used in prior work (Liu et al. 2018). Our vector of manu-
ally crafted features consists of Boolean values indicating
the presence or absence of indicative strings we observed in
our training and validation data. For example, we include the
string not collect, because we realized that it would be
a strong indicator of the negative modality.

Training Using scikit-learn, version 0.18.1 (Pedregosa
et al. 2011) we train binary classifiers for each data
type, party, and modality. For all but four classifiers
we use scikit-learn’s SVC implementation (scikit-learn
developers 2016b). We train those with a linear ker-
nel (kernel=’linear’), balanced class weights
(class weight=’balanced’), and a grid search with



Configuration
Classifier Baseline + Bigrams + C.F. + S.F. + Final
Contact 29% +42% +35% +28% +39%
Contact Email Address 73% +9% +8% +12% +11%
Contact Phone Number 76% +11% +2% +11% +9%
Identifier Cookie 88% +2% +2% +3% +2%
Identifier Device ID 74% +9% +8% +12% +13%
Identifier IMEI 77% -19% +20% +17% +17%
Identifier MAC 84% -23% +2% -2% -2%
Identifier Mobile Carrier 62% -14% -3% 0% -14%
Location 80% +4% +3% +9% +6%
Location Cell Tower 62% -4% +4% +12% +10%
Location GPS 76% -1% +3% +16% +12%
Location WiFi 74% +5% +5% +1% +5%
Single Sign On 63% +7% +11% -43% +4%
Single Sign On: Facebook 75% +3% +5% -64% +6%
1stParty 95% +0% -1% -1% +0%
3rdParty 77% +4% +2% +1% +1%
Performed 90% +1% +5% -2% +6%
Not Performed 73% -2% +13% +5% +14%

Table 1: Effects of different preprocessing and feature con-
figurations on our classifiers’ F1 scores. Effects are calcu-
lated with regard to a baseline configuration (Baseline), in
which the TF-IDF vectors only include unigrams. For the
baseline, bigrams (Bigrams) and manually crafted features
(C.F.) are not included, and keyword-based sentence filter-
ing (S.F.) is not performed. For example, including bigrams
in our TF-IDF vectors leads to an F1 score increase of 42%
(from 29% to 71%) for the Contact classifier. Our final con-
figuration (Final) includes bigrams as well as crafted fea-
tures; sentence filtering is enabled on a per-classifier basis
using a grid search.

Configuration Improved Avg. Improvement Decreased Avg. Decrease
+ Bigrams 11/18 +8.8% 6/18 -10.5%
+ Crafted Features 16/18 +8.0% 2/18 -2.0%
+ Sentence Filtering 12/18 +10.6% 5/18 -22.4%
Final 15/18 +10.3% 2/18 -8.0%

Table 2: Summary of effects of different preprocessing and
feature configurations on F1 scores based on the data shown
in Table 1. For example, adding bigrams (+ Bigrams) to our
TF-IDF vectors improved the F1 scores of 11 classifiers by
an average of 8.8%, but also decreased the F1 scores for 6
classifiers by an average of 10.5%.

five-fold cross-validation over the penalty (C=[0.1, 1,
10]) and gamma (gamma=[0.001, 0.01, 0.1]) pa-
rameters. We create rule-based classifiers for four data types
(Identifier, Identifier IMSI, Identifier
SIM Serial, and Identifier SSID BSSID) due to
the limited amount of data and their superior performance.
Our rule-based classifiers identify the presence or absence
of a data type based on indicative text strings.

Table 1 shows the effects of our features and preprocess-
ing steps on the F1 scores of our non-rule-based classifiers.
The performance is calculated using our training and valida-
tion sets. We made sentence filtering an optional part of pre-
processing because of the large detrimental effect it has on
some of our classifiers, as highlighted in Table 2. In general,
our results suggest that the chosen feature and preprocess-
ing steps improve classifier performance. However, ideally
they should be chosen on a per-classifier basis to avoid any
negative performance impact.

Performance Analysis Table 3 shows the performance of
the classifiers on the privacy policies of the test set. We say a
policy describes a practice if at least one segment is flagged
by the corresponding data type, party, and positive modal-
ity classifiers. Since our definition of potential compliance
issues does not depend on the negative modality classifier,
we do not include it in the table. Because detecting potential
compliance issues is dependent on detecting when practices
are not described in policies (Zimmeck et al. 2017), nega-
tive predictive value, specificity, and negative F1 scores are
of particular importance.

In the closest related work (Zimmeck et al. 2017), classi-
fiers for contact, identifier, and location data practices cov-
ered multiple specific practices. Thus, a direct performance
comparison to our classifiers is not possible. However, with
negative F1 scores ranging from 78% to 100%, 23 of our
specific classifiers achieve better negative F1 scores than the
corresponding course-grained classifiers, and 3 performed
equally. These results demonstrate that our approach consti-
tutes an overall improvement over the state of the art. We
believe that decomposing the classification task into three
subproblems increases performance as it allows for a better
exploitation of training data compared to monolithic classi-
fiers.

Our results reveal that generally + support is lower for
third party practices; that is, third party practices are often
not as extensively described in privacy policies as first party
practices. It should be further noted that higher counts of -
support generally correlate with higher performance scores.
Intuitively, it is easier to classify a policy that does not de-
scribe a practice, which makes up the majority of - support
instances.

We reviewed the errors made by our classifiers and iden-
tified several potential areas for improvement. First, ap-
proaching the classification task at the level of segments,
as suggested by prior work (Wilson et al. 2016; Liu et al.
2018), can pose difficulties for our subproblem classifiers.
For example, if a segment describes a 1stParty perform-
ing the Location practice, and a 3rdParty performing
Contact, our classifiers cannot distinguish which party
should be associated with which practice. Thus, perform-
ing classifications at the level of sentences may yield per-
formance improvements. Second, the variety of technical
language in privacy policies poses challenges. For exam-
ple, we observed a false positive when “location” was used
in the context of “co-location facility”, and a false negative
when “clear gifs” was used to refer to web beacons. Such
errors might be prevented by training on more data or using
domain-specific word embeddings (Kumar et al. 2019). Fi-
nally, a more sophisticated semantic representation might be
necessary in certain cases. For example, we observed mis-
classification of a sentence which said that although the first
party does not perform a practice, third parties do perform
the practice.

App Analysis
MAPS detects apps’ privacy practices at app store-wide
scale. Detecting which practices an app performs relies on
static code analysis, a relatively resource-efficient technique



Policy Classification NPV Specificity Neg. F1 Precision Recall F1 +/- Support
Contact 1stParty 92% 96% 94% 89% 80% 84% 30/70
Contact 3rdParty 95% 96% 95% 43% 38% 40% 8/92
Contact Email Address 1stParty 78% 90% 84% 97% 94% 96% 80/20
Contact Email Address 3rdParty 91% 83% 87% 29% 46% 35% 13/87
Contact Phone Number 1stParty 93% 93% 93% 94% 94% 94% 54/46
Contact Phone Number 3rdParty 97% 93% 95% 22% 40% 29% 5/95
Identifier 1stParty 93% 68% 78% 38% 80% 52% 20/80
Identifier 3rdParty 97% 76% 85% 21% 75% 33% 8/92
Identifier Cookie 1stParty 100% 92% 96% 95% 100% 98% 63/37
Identifier Cookie 3rdParty 94% 92% 93% 92% 94% 93% 52/48
Identifier Device ID 1stParty 86% 96% 91% 96% 87% 91% 54/46
Identifier Device ID 3rdParty 97% 95% 96% 83% 90% 86% 21/79
Identifier IMEI 1stParty 99% 99% 99% 94% 94% 94% 17/83
Identifier IMEI 3rdParty 99% 100% 99% 100% 75% 86% 4/96
Identifier IMSI 1stParty 100% 100% 100% 100% 100% 100% 3/97
Identifier IMSI 3rdParty 99% 100% 99% N/A 0% 0% 1/99
Identifier MAC 1stParty 95% 98% 96% 88% 79% 83% 19/81
Identifier MAC 3rdParty 99% 96% 97% 56% 83% 67% 6/94
Identifier Mobile Carrier 1stParty 90% 100% 95% 100% 57% 73% 21/79
Identifier Mobile Carrier 3rdParty 98% 97% 97% 25% 33% 29% 3/97
Identifier SIM Serial 1stParty 100% 97% 98% 73% 100% 84% 8/92
Identifier SIM Serial 3rdParty 100% 99% 99% 50% 100% 67% 1/99
Identifier SSID BSSID 1stParty 99% 100% 99% 100% 80% 89% 5/95
Identifier SSID BSSID 3rdParty 100% 99% 99% N/A N/A N/A 0/100
Location 1stParty 92% 81% 86% 87% 95% 91% 58/42
Location 3rdParty 96% 83% 89% 61% 87% 71% 23/77
Location Cell Tower 1stParty 98% 94% 96% 71% 86% 77% 14/86
Location Cell Tower 3rdParty 98% 95% 96% 29% 50% 36% 4/96
Location GPS 1stParty 99% 94% 96% 88% 97% 92% 29/71
Location GPS 3rdParty 99% 94% 96% 45% 83% 59% 6/94
Location WiFi 1stParty 99% 86% 92% 48% 92% 63% 12/88
Location WiFi 3rdParty 100% 95% 97% 29% 100% 44% 2/98
Single Sign On 89% 90% 90% 83% 81% 82% 37/63
Single Sign On: Facebook 95% 84% 89% 72% 91% 81% 32/68

Table 3: Performance metrics of our classifiers for determining whether or not a privacy policy states that a practice is performed
calculated on the test set (n = 100). The negative predictive value (NPV) is the precision for negative instances. Specificity is
the recall for negative instances. Negative F1 (Neg. F1) is the F1 for negative instances. In the Support column, + is the number
of ground-truth positive instances (cases where policies truly describe the practice being performed) and - is the number of
ground-truth negative instances (cases where policies truly do not describe the practice being performed). With negative F1
scores ranging from 78% to 100%, the absence of all practices can be classified relatively accurately. Lower positive F1 scores,
for example, 40% for access of contact information by third parties, could be the result of insufficient availability of data. N/A
is shown where the metrics are undefined, or where a lack of positive ground truth instances would always make the metric
zero.

compared to dynamic code analysis. Our system operates
on four app resources: Android APIs, permissions, strings,
and class structure. If a sensitive Android API is called, the
app has the required permissions to make the call, and re-
quired string parameters (e.g., the GPS PROVIDER string)
are passed in, the system will flag the existence of a first
or third party practice depending on the package name of
the class from which the call originated. We assume a threat
model which considers data as compromised from the mo-
ment a privacy-sensitive API appears to be called (Neisse et
al. 2016).

After downloading an app from the Google Play Store our
system decompiles it into Smali bytecode using Apktool.4
It then searches through the bytecode, identifying APIs in-
dicative of a privacy practice being performed. Generally, if
a practice occurs in a package corresponding to the app’s
package ID, the practice is considered a first party practice;
otherwise, it is considered a third party practice. In order to
evaluate the performance of our system’s app analysis, we
compare its results against ground truth obtained by a man-

4Apktool, https://ibotpeaches.github.io/Apktool/, accessed:
March 18, 2019.

ual dynamic analysis.

Compliance Analysis
Our system combines policy and app analysis results to iden-
tify potential compliance issues. We define a potential com-
pliance issue to mean that an app is performing a practice
(e.g., Location GPS 1stParty) while its associated
policy does not disclose it either generally (e.g., “Our app
accesses your location data.”) or specifically (e.g., “Our app
accesses your GPS data.”). We chose this definition because
we observed that policies generally either disclose that a
practice is performed or omit discussion of the practice—
statements denying practices are rare.

Table 4 shows our system’s identification of potential
compliance issues and its performance. For the 26 practices
for which positive ground truth instances were present, we
observe a mean F1 score of 71%. Many potential compliance
issues relate to the access of identifiers. However, the three
third party location practices Cell Tower, GPS, and WiFi ac-
count for 15, 10, and 12 respective findings as well. Notably,
all first party practices exhibit a lower number of potential
compliance issues than their third party counterparts.



Potential Compliance Issue Precision Recall F1 +/-/? Support
Contact Email Address 1stParty 75% 75% 75% 4/77/19
Contact Email Address 3rdParty 38% 71% 50% 7/74/19
Contact Phone Number 1stParty 100% 100% 100% 1/82/17
Contact Phone Number 3rdParty 29% 67% 40% 3/80/17
Identifier Cookie 1stParty 50% 100% 67% 1/70/29
Identifier Cookie 3rdParty 83% 87% 85% 23/48/29
Identifier Device ID 1stParty 70% 88% 78% 16/63/21
Identifier Device ID 3rdParty 96% 86% 91% 58/21/21
Identifier IMEI 1stParty 79% 65% 71% 17/64/19
Identifier IMEI 3rdParty 76% 85% 80% 26/55/19
Identifier IMSI 1stParty 33% 67% 44% 3/78/19
Identifier IMSI 3rdParty 69% 82% 75% 11/70/19
Identifier MAC 1stParty 83% 91% 87% 11/70/19
Identifier MAC 3rdParty 58% 78% 67% 23/58/19
Identifier Mobile Carrier 1stParty 78% 70% 74% 20/61/19
Identifier Mobile Carrier 3rdParty 92% 75% 83% 64/18/18
Identifier SIM Serial 1stParty 50% 50% 50% 2/81/17
Identifier SIM Serial 3rdParty 50% 88% 64% 8/75/17
Identifier SSID BSSID 1stParty 83% 56% 67% 9/74/17
Identifier SSID BSSID 3rdParty 53% 62% 57% 16/67/17
Location Cell Tower 1stParty 100% 100% 100% 2/76/22
Location Cell Tower 3rdParty 79% 73% 76% 15/63/22
Location GPS 1stParty N/A N/A N/A 0/77/23
Location GPS 3rdParty 70% 70% 70% 10/67/23
Location WiFi 1stParty 50% 100% 67% 1/77/22
Location WiFi 3rdParty 75% 75% 75% 12/66/22
Single Sign On: Facebook 56% 45% 50% 11/72/17

Table 4: Performance metrics of our system’s ability to de-
tect potential compliance issues on our test set of app/policy
pairs (n = 100). In the Support column, + is the number
of ground-truth positive instances of potential compliance
issues, - is the number of ground-truth negative instances,
and ? is the number of instances where missing ground truth
data from our app analyses makes it unclear whether or not
potential compliance issues exist.

4 Privacy Compliance in the Play Store

Our large-scale analysis of free apps in the Google Play
Store provides us with a rich dataset for evaluating the state
of privacy in a substantial part of the Android ecosystem.
Here, we summarize our findings, with a focus on our pri-
vacy policy analysis. For a complete description of our find-
ings, please see (Zimmeck et al. 2019).

Analyses at Scale

Designing and implementing a robust system to identify po-
tential compliance issues for large app populations presents
challenges of scale. We address those with a pipeline of
distributed tasks implemented in a containerized software
stack. We performed our Play Store analysis from April
6 to May 15, 2018. Out of 1,049,790 retrieved free apps,
1,035,853 (98.67%) were analyzed successfully. Of the
apps which were not analyzed successfully, 1.03% failed
to download, 0.21% failed in the static analysis, 0.08%
failed in the policy analysis, and 0.01% failed during our
re-analysis.5

Figure 2: Third party practices are discussed less frequently
than first party practices. Given that users often have less
opportunity to observe third party practices directly, it is un-
fortunate that they are not more widely discussed. A policy
both affirming and denying a practice does not necessarily
imply a contradiction (e.g., “We disclose your phone num-
ber to advertisers, but not to data brokers.”).

Which Practices are Described in Policies?
35.3% of the apps we analyzed had privacy policies.6 For
apps with privacy policies, Figure 2 depicts the occurrence
of policy statements relating to the practices we examine.
It can be observed that most practices are described only
infrequently; that is, a policy does not mention it at least
once. Further, the statements that are present typically affirm
that a practice is occurring. This finding reveals that users
seem to be given little assurance of potentially objection-
able practices not being performed (e.g., disclosing users’
phone numbers to third parties). Silence about privacy prac-
tices in privacy policies is problematic because there are no
clear statutory default rules of what the privacy relationship
between a user and a service should be, in the absence of
explicit statements in the policy (Marotta-Wurgler 2015).

Prevalence of Potential Compliance Issues
Our system detects potential compliance issues by compar-
ing the privacy policy analysis to the static analysis. A po-
tential compliance issue is detected when an app performs a
practice that is not described in the app’s privacy policy (if
the app even has a privacy policy). Note that when our sys-
tem finds multiple privacy policies for a given app, it pools

5After the completion of the Play Store analysis we noticed a
bug in our static analysis code. As a result, we re-performed the
static analyses and re-calculated all statistics. 135 additional analy-
ses failed, yielding a final total of 1,035,853 successfully analyzed
apps.

6This only counts English-language privacy policies: our sys-
tem does not identify policies in other languages.



Figure 3: The percents of apps which perform different prac-
tices, have policies that affirmatively describe practices as
performed, and have potential compliance issues. In this
graph, general descriptions of practices are counted with
specific descriptions.

the practice descriptions discovered across all those poli-
cies. This pooling has the effect of making our results rather
conservative. One policy may disclose a particular practice
while another policy discloses another practice, and together
they may cover all practices performed by the associated
app. Overall, the average number of potential compliance
issues per app is 2.89 and the median is 3.

Figure 3 shows the percent of apps that perform vari-
ous practices and the respective percent of apps with po-
tential compliance issues. The figure demonstrates that in
many cases the performance of a practice is strongly asso-
ciated with the occurrence of a potential compliance issue:
if a practice is performed, there is a good chance a potential
compliance issue exists as well. This result suggests a broad
level of potential non-compliance. Identifier-related poten-
tial compliance issues are the most common. Three different
types of identifiers make up most potential compliance is-
sues: cookies, device IDs, and mobile carriers. In particular,
the use of device IDs may constitute a misuse for purposes
of ad tracking (Google 2018b). In addition, there are also el-
evated levels of location-related potential compliance issues.
15.3% of apps perform at least one location-related practice,
and 12.1% of apps have at least one location-related poten-
tial compliance issue.

For all data types, third party practices are more common
than first party practices and so are third party-related po-
tential compliance issues. One reason for the prevalence of
potential compliance issues for third party practices could be
that app developers are unaware of the functionality of the
libraries they integrate. Perhaps they also hold the mistaken

belief that it is not their responsibility but the responsibil-
ity of the library developers to disclose to users the prac-
tices the libraries are performing. Some libraries’ terms of
services—for example, the Google Analytics Terms of Ser-
vice (Google 2018a)—obligate the developer integrating it
to explicitly disclose the integration in the developer’s pri-
vacy policy. However, this type of information transfer from
the third party via the developer to the user may be suscep-
tible to omissions and mistakes.

5 Conclusions
Natural language privacy policies are intended to commu-
nicate how a service collects, shares, uses, and stores user
data. However, as they are generally lengthy and difficult to
read, the average user often struggles to understand which
privacy practices apply. Leveraging natural language pro-
cessing techniques in the policy domain holds the promise
to extract policy content and convert it to a format that is
easier to comprehend. In this study, we reported on our de-
velopment of a three-tiered classification model to classify
a variety of privacy practices and their omissions in policy
text. Compared to a monolithic classifier for a privacy prac-
tice, using data type, party, and modality classifiers allows
for economic use of training and test data—which is often-
times expensive to obtain—as well as good performance.

The classification model we are proposing here is an inte-
gral part of the Mobile App Privacy System (MAPS) (Zim-
meck et al. 2019). Many mobile apps are reliant on the col-
lection and use of a wide range of data for purposes of their
functionality and monetization. MAPS presents one use case
for implementing the suggested privacy policy classification
model. MAPS pairs our policy analysis with static anal-
ysis of mobile apps to identify possible discrepancies be-
tween the two and flag potential compliance issues. Our re-
sults from analyzing 1,035,853 free apps on the Google Play
Store suggest that potential compliance issues are rather
common, particularly, when it comes to the disclosure of
third party practices. These and similar results may be of
interest to app developers, app stores, privacy activists, and
regulators.

Recently enacted laws, such as the General Data Pro-
tection Directive, impose new obligations and provide for
substantial penalties for failing to properly disclose privacy
practices. We believe that the natural language analysis of
privacy policies, in tandem with mobile app analysis, for ex-
ample, has the potential to improve privacy transparency and
enhance privacy levels overall.
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