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Abstract
The number and dynamic nature of web sites and mobile applications present regu-
lators and app store operators with significant challenges when it comes to enforcing 
compliance with applicable privacy and data protection laws. Over the past several 
years, people have turned to Natural Language Processing (NLP) techniques to auto-
mate privacy compliance analysis (e.g., comparing statements in privacy policies 
with analysis of the code and behavior of mobile apps) and to answer people’s pri-
vacy questions. Traditionally, these NLP techniques have relied on labor-intensive 
and potentially error-prone manual annotation processes to build the corpora neces-
sary to train them. This article explores and evaluates the use of Large Language 
Models (LLMs) as an alternative for effectively and efficiently identifying and cat-
egorizing a variety of data practice disclosures found in the text of privacy policies. 
Specifically, we report on the performance of ChatGPT and Llama 2, two particu-
larly popular LLM-based tools. This includes engineering prompts and evaluat-
ing different configurations of these LLM techniques.  Evaluation of the resulting 
techniques on well-known corpora of privacy policy annotations yields an F1 score 
exceeding 93%. This score is higher than scores reported earlier in the literature on 
these benchmarks. This performance is obtained at minimal marginal cost (exclud-
ing the cost required to train the foundational models themselves). These results, 
which are consistent with those reported in other domains, suggest that LLMs offer 
a particularly promising approach to automated privacy policy analysis at scale.
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1 Introduction

The digital era has led to an unprecedented expansion of web and mobile applica-
tions and a myriad of online services. This growth is a testament to technological 
advancement and the increasing reliance of businesses and organizations on digi-
tal platforms for various operations. A central aspect of this digital proliferation 
is the extensive use of technologies for personal data collection, primarily driven 
by the objective of enhancing targeted marketing strategies. The ability to collect, 
analyze, and utilize user data has become a cornerstone of modern commerce, 
offering businesses invaluable insights into consumer behavior and preferences.

However, the increasing collection and utilization of personal data has raised 
significant privacy concerns. Users’ privacy is at risk as their data becomes valu-
able in the digital marketplace. This concern has led to the emergence of reg-
ulatory bodies and the formulation of data protection legislation aimed at safe-
guarding user privacy. These legislations, such as the General Data Protection 
Regulation (GDPR) in the European Union or the California Consumer Privacy 
Act (CCPA) in California, impose stringent requirements on how organizations 
should handle personal data.

Ensuring compliance with these legislations, however, poses a formidable 
challenge. The   proliferation of online services, compounded by globalization, 
makes it impractical, if not impossible, for regulators to manually assess each 
service’s adherence to applicable  privacy laws. This situation is further exacer-
bated by the dynamic nature of online services, where data processing practices 
and the privacy policies disclosing them are subject to frequent changes [1]. In 
response to these challenges, automated methods have been proposed for analyz-
ing the text privacy policies at scale [2]. These techniques can in turn be used to 
develop a variety of useful tools [3, 4], some to help individual consumers (e.g., 
privacy question answering assistants, or browser extensions to help users take 
advantage of privacy choices buried deep in the text of privacy policies), some to 
help developer, companies, app stores and regulatory agencies (e.g., tools to help 
automatically identify potential compliance issues). 

The automated analysis of privacy policies has leveraged Natural language 
processing (NLP) techniques [2]. Symbolic and statistical state-of-the-art NLP 
techniques are proposed to address this task, although each has drawbacks. Sym-
bolic approaches rely on pre-defined rules, leading to lower performance when 
compared to statistical approaches due to the lack of adaptability to differences 
present in legal texts. Thus, state-of-the-art research has predominantly relied on 
statistical approaches such as machine learning (ML) techniques, and particu-
larly supervised learning models, to train and evaluate models identifying privacy 
practice disclosures such as personal data collection or sharing [5]. These mod-
els require the use of manually annotated datasets [6–8], which are often expen-
sive, time-consuming to create, and prone to errors [9]. Furthermore, building 
and training those models require advanced technical expertise, contributing to a 
higher barrier to entry. As a result, their practical application is mainly suitable 
for large-scale projects where the benefits can outweigh these significant costs. 
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On the other hand, modern Generative Artificial Intelligence (GenAI), particu-
larly Large language models (LLMs), represents a significant advancement in the 
NLP domain, being able to understand and generate human-like text, making it 
particularly well-suited for parsing and analyzing the complex language present 
in privacy policies without needing annotated datasets. In this context, this paper 
proposes the application of LLMs for the effective and efficient extraction of pri-
vacy practices from privacy policies. In particular, we focus on ChatGPT, which 
relies on Generative Pre-trained transformer (GPT) models.

Our study identifies the optimal configuration of ChatGPT prompts, param-
eters, and models, integrating advanced techniques such as few-shot learning. 
Additionally, we conduct a comparative analysis of our proposed ChatGPT con-
figuration with Llama 2 and other state-of-the-art techniques. Our findings reveal 
that our proposal competes with and even outperforms these traditional methods. 
Moreover, we discuss its advantages regarding lower upfront costs, reduced pro-
cessing times, and greater ease of use.

Thus, we propose LLM-based solutions and our specific ChatGPT configura-
tion as a viable replacement for traditional NLP techniques in the task of auto-
mated privacy policy processing. Our research contributes to the ongoing dis-
course on the application of GenAI in legal and regulatory contexts [10–12], 
suggesting a paradigm shift towards more efficient, cost-effective, and accessible 
tools for privacy policy analysis.

2  Background

The development of new privacy policy analysis methods leveraging statistical 
NLP approaches frequently requires labeled corpora for training and validation. 
In the domain of privacy policy analysis, several datasets manually annotated by 
legal experts have been employed to build supervised learning methods.

2.1  MAPP dataset

The MAPP corpus [13] plays a crucial role in our study of privacy policy analy-
sis. It comprises 64 privacy policies from Google Play Store apps, segmented into 
paragraphs. Each segment is meticulously annotated by legal experts to indicate 
whether it discloses the collection or sharing of various types of personal data. 
For example, a typical annotation might label a paragraph as disclosing the col-
lection of geographical location data. This granularity enables precise training 
and validation of NLP models designed to identify specific data handling prac-
tices. Notably, the MAPP corpus is one of the few multilingual datasets available, 
including annotations in both English and German, which broadens its applicabil-
ity and utility in cross-lingual legal studies.



3882 D. Rodriguez et al.

2.2  OPP‑115 dataset

The OPP-115 dataset [14] is among the most utilized corpora in privacy policy 
research and one of the oldest in the field. It follows a similar annotation model to 
MAPP but encompasses a broader scope with 115 annotated privacy policies. Each 
policy is annotated for nearly identical practices and data types, as seen in MAPP, 
which allows for comparative analysis and benchmarking across studies. An exam-
ple annotation in OPP-115 might involve identifying clauses related to third-party 
data sharing.

2.3  APP‑350 dataset

As the largest dataset in this domain, APP-350 [3] includes 350 privacy policies, 
annotated with even finer details regarding data collection and sharing practices 
than the previous datasets. This dataset serves as a comprehensive tool for training 
models to detect and interpret complex legal language regarding data privacy. For 
instance, the annotations distinguish whether data collection or sharing is conducted 
by the first party or a third party. Such distinctions may be particularly valuable for 
assessing compliance with data protection regulations.

2.4  IT‑100 dataset

The IT100 dataset [15] focuses on international data transfer disclosures in privacy 
policies, containing annotations for 100 different policies. This dataset highlights 
specific statements that indicate cross-border data transfer, such as clauses pertain-
ing to the European Union’s General Data Protection Regulation (GDPR). An exam-
ple from this dataset would be annotations identifying the mechanisms used for data 
transfer, like Standard Contractual Clauses.

3  Related work

Privacy policies are documents written in plain text that outline how organizations 
handle personal data. However, the complexity and length of these documents often 
make them challenging to understand and process [16]. This has spurred interest in 
automated methods for analyzing privacy policies [2], which fall into two major cat-
egories, namely, symbolic and statistical NLP.

Symbolic NLP approaches [17–19] are relevant but come with inherent limita-
tions when processing new texts: these techniques model language through gram-
mar rules and lexicons, thus requiring extensive manual effort to create and code 
these rules. This process is both time-consuming and hard to scale, especially 
when dealing with intricate aspects of privacy policies. Symbolic NLP is effec-
tive in morphological and lexical analysis, such as identifying privacy practices 
through keyword analysis. It also handles more complex tasks like syntactic and 
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semantic analysis, using tools like the Stanford dependency parser [20]. Poli-
cyLint [21] is a state-of-the-art tool based on this symbolic NLP approach that 
employs ontologies to detect contradictions in privacy policy statements about 
personal data collection and sharing. Its ability to identify negative sentences-a 
challenging task for statistical NLP techniques–highlights its potential for spe-
cific privacy policy analysis tasks. However, it faces challenges with unantici-
pated variations, including typos or infrequent cases, thus limiting its applicabil-
ity to new cases.

Statistical NLP approaches, on the other hand, leverage machine learning tech-
niques for language processing: supervised, unsupervised, and Artificial neural net-
works (ANN)-based techniques. Supervised methods are the predominant technique 
usually employed for automated privacy policy analysis, with geometric algorithms 
like Support vector machine (SVM) [14, 22–24] and Logistic Regression (LR) [25, 
26] being the most prevalent. Unsupervised techniques, although less common, 
utilize models like Hidden Markov models (HMM) [14, 27] and Latent Dirichlet 
Allocation (LDA) [28] for clustering practices during policy analysis. ANN-based 
techniques are also in use for this task, including Convolutional Neural Networks 
(CNNs) [8, 29], Recurrent neural networks (RNN) [30], and Google’s BERT [6, 31], 
sometimes showing superior performance than supervised learning methods [6, 31].

Expanding upon symbolic and statistical NLP methods, LLMs can generate 
coherent text based on a given input, such as GPTs [32] and Llama 2 [33]. Building 
on those LLMs, ChatGPT and Llama 2-Chat are chatbots trained to provide mean-
ingful answers to pieces of text inputs (i.e., prompts) and with adjustable perfor-
mance through parameters like “temperature” that influence the results’ variability 
[34], and response times. The ability to provide relevant answers is achieved through 
a combination of unsupervised and supervised learning techniques underpinned by 
neural networks trained on extensive datasets. Additionally, the relevance and format 
of the responses are typically enhanced through prompt augmentation [35], which 
involves modifying the given input prompt to improve the output performance or 
to steer the output in a specific direction. Notably, LLMs’ proficiency in processing 
lengthy input texts is boosted by the attention mechanisms inherent in transformer 
architectures [36]. A recent study conducted by Qin et al. [37] has analyzed to what 
extent LLMs like ChatGPT can perform various tasks -reasoning, language infer-
ence, Q&A, dialogue, summarization, entity recognition, and sentiment analysis—
using 20 well-established NLP datasets to benchmark their performance, showing 
high reasoning capabilities.

Integrating LLMs into the automated analysis of privacy policies and legal texts 
[38] represents a significant evolution in assessing compliance with data protection 
regulations. Tang et  al. [12] have explored their application in this context, high-
lighting its potential to surpass traditional methods in extracting and classifying gen-
eral, coarse-grained privacy practices within legal texts. Our research extends this 
exploration by thoroughly analyzing LLMs’ ability to identify more detailed data 
practices in privacy policies. We provide insights into the optimal model configura-
tion for this task and further demonstrate LLMs’ generalization capabilities, particu-
larly ChatGPT’s, to identify varied privacy practices. Our findings reveal that Chat-
GPT, leveraging few-shot learning, outperforms traditional symbolic and statistical 
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NLP methods in key areas, including classification performance, time efficiency, 
and cost-effectiveness.

4  Experimental design

GPT models have an intrinsically complex behavior dependent on the prompt 
design, configuration parameters, and model selection. We rely on the Design Sci-
ence Research (DSR) methodology [39] to propose a ChatGPT framework for pri-
vacy policy analysis and evaluate its effectiveness. DSR guides the design of new 
artifacts through an iterative and systematic process. Specifically, we followed an 
iterative split testing process [40] to assess the performance of the prompt, param-
eter, or model selection changes within each iteration. Finally, we check our pro-
posed configuration performance against two unseen sets of policies, conduct a set 
of comparative analyses with state-of-the-art solutions, and demonstrate its generali-
zation capabilities. Through this systematic process, we propose a well-performing 
and generalizable configuration of ChatGPT as a novel and effective approach for 
the automated analysis of privacy policies.

4.1  Ground truth

Determining the optimal ChatGPT configuration that offers the best performance 
requires using a ground truth dataset to validate and quantify results. We relied on 
the MAPP dataset [13] for this task, retaining an experimental set on which to apply 
changes and measure their impacts and a control set to validate the final configura-
tion’s overall performance. Unlike traditional NLP techniques, using a ground truth 
dataset is only required while designing the configuration framework. Afterward, we 
can generalize it to identify other privacy practices without generating new anno-
tated datasets or validating new methods, as demonstrated in Sect. 5.

The MAPP dataset is inherently unbalanced, presenting a challenge for objec-
tive analysis. To address this, we employed stratified sampling to create balanced 
experimental and control subsets, ensuring that each subset was representative of 
the overall dataset’s diversity in data types collected. Thus, we stratified sampling to 
generate the experimental (33 policies) and control (31 policies) subsets. The distri-
bution of data types in these subsets is presented in Table 1. With a standard devia-
tion between both datasets of 2.44 for all data categories, with categories annotated 
in almost all policies (e.g., IP address and device IDs, in 95%) and others in only 
one of them (e.g., Political, religious, or philosophical belief). This is contextualized 
against the backdrop of the mean annotation counts per policy, which are 8.13 and 
8.18 for the experimental and control sets, respectively. The observed standard devi-
ation, in relation to the means, suggests a moderate degree of variance in annotation 
frequency per policy across the datasets. This degree of variability is within accept-
able limits for the intended analytical scope, affirming a balanced and representative 
data stratification for the empirical analysis.
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Table 1  Distribution of 
personal data types between 
‘experimental’ and ‘control’ sets 
following stratified sampling

Personal data type Experi-
mental 
set

Control set

Computer information 27 22
Contact information 28 29
Cookies and tracking elements 29 25
Demographic data 21 22
Financial 23 17
Generic personal information 28 31
Health, genetic, or biometric data 7 7
IP address and device IDs 31 30
Location 23 23
Other 27 26
Personal identifier 9 7
Political, religious, or philosophical belief 1 1
Social media data 14 11
Unspecified 30 27
User online activities 31 30

Fig. 1  Baseline and final ChatGPT prompt designs for the identification of privacy practices in privacy 
policies
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4.2  Prompt design

We departed from the prompt design depicted in Fig. 1a. This baseline prompt is 
structured in Data, Task and Output format instruction segments. Data is the pri-
vacy policy for identifying practices. Task is the actual practice in which identifica-
tion in the policy is requested. Output format instruction provides the guidelines to 
obtain responses that can be processed automatically.

We applied this baseline prompt to the specific task of identifying types of per-
sonal data purportedly collected or shared as per the privacy policy. This required 
providing the privacy policy in the Data segment, asking about each data type in the 
Task segment, and steering the formatting of responses, including “Data: Answer” 
in the Output format instruction segment. In our experiment, this baseline prompt 
achieved the following metrics: 0.79 accuracy, 0.92 recall, 0.78 precision and 0.84 
F1 score.

Crafting the optimum prompt design requires a split testing process to reveal the 
effects of various changes in the prompt. The only ChatGPT parameter adjusted dur-
ing this phase is the temperature value, set to zero to provide more deterministic 
responses [41], and using the GPT-4 Turbo model to take advantage of its speed and 
input prompt size capabilities up to 128k tokens. While numerous tests were con-
ducted, this section will focus solely on those that involved a significant change in 
performance metrics. A detailed summary of these metrics, derived from each test, 
is encapsulated in Table 2. In this testing sequence, each technique that demonstrated 
a performance improvement was systematically integrated into the subsequent tests. 
Thus, each new test was benchmarked against the last updated configuration.

Specifying data boundaries. Incorporating the phrase “The following text is a pri-
vacy policy” improved the metrics, specifically a +1.47% increase in accuracy (from 
0.793 to 0.804), +0.4% in recall, +1.36% in precision, and +0.92% in F1 score. This 
improvement is attributed to enhancing the model’s ability to discern the limits of 
the privacy policy text. A minor adjustment involving the indication that the privacy 
policy text is enclosed in double quotes led to an additional +0.8% rise in recall, 
precision, and F1 score, and a +1.16% increase in accuracy.

Data placement. We evaluated the impact of the placement of the privacy policy 
within the prompt-either at the beginning or the end-on the performance metrics. 
Positioning the privacy policy at the end, contrary to the beginning, slightly dimin-
ished the overall metrics, including a decrease in accuracy by −1.15%, recall by −
1.98%, precision by −0.07%, and F1 score by −0.97%.

Augmenting task description. The initial prompt version primarily focused on 
enumerating the types of data to be identified. However, given the inherent complex-
ity of data categorization–a challenge even for human annotators as substantiated in 
related literature [42]—the prompt was augmented to include the internal definitions 
used for manual annotations in the MAPP dataset. While this expansion resulted in 
a lengthier prompt, it significantly enhanced all metrics except for recall, with an 
increase of +4.58% in accuracy, a decrease of −0.79% in recall, +5.96% in preci-
sion, and +2.72% in F1 score.

Message splitting. We have tested splitting the prompt into two different mes-
sages, passed to ChatGPT one after the other. Specifically, we separated the privacy 
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policy (Data segment) from the remainder prompt. The results show a better over-
all understanding and comprehension of the privacy policy, reflected in a +1.56% 
increase in precision, +0.56% increase in accuracy and +0.22% increase in F1 score, 
at the cost of a −1.2% decrease in recall.

Data pruning. This technique eliminates the paragraphs of the policy that do not 
have information regarding collecting or sharing personal data. We crafted a specific 
prompt for this task. The results show the overall policy metrics have remained prac-
tically the same.

Segmentation. We also assessed the role of input processing in the results with 
three different configurations: (1) Data segmentation, i.e., analyzing each individual 
paragraph at a time; (2) Task segmentation, i.e., asking only for one specific practice 
(e.g., a given data type collection) at a time, and (3) Data and Task segmentation, 
i.e., asking for one specific practice in one specific paragraph. Data segmentation 
did not show significant improvement. However, Task segmentation had a surpris-
ing effect on the result: accuracy decreased by −5.48%, recall decreased by −18.4%, 

Table 2  Metrics obtained with each technique tested on ChatGPT and Llama 2. The tests have been exe-
cuted sequentially and are incremental: when a technique exhibits superior performance (highlighted in 
bold within the table), it is incorporated into the subsequent test. The sole exception to this is the Data 
Segmentation test, which demonstrated a minimal improvement in the F1 score at the expense of sig-
nificantly increased processing time and a decrease in precision; hence, this technique has not been ulti-
mately integrated. GPT-4 Turbo and Llama 2 70B-Chat models are used unless otherwise stated, as they 
showed the best performance

Prompt technique Accuracy Precision Recall F1 Score

ChatGPT
Baseline prompt 0.793 0.785 0.922 0.848
Specify Data boundaries 0.804 0.796 0.926 0.856
Specify Data boundaries (double quotes) 0.814 0.803 0.933 0.863
Data placement (Bottom) 0.804 0.802 0.915 0.855
Augmenting Task description 0.851 0.850 0.926 0.887
Message splitting 0.855 0.864 0.915 0.888
Data pruning 0.848 0.847 0.926 0.885
Data segmentation 0.850 0.837 0.948 0.889
Task segmentation 0.804 0.919 0.756 0.829
Data & Task segmentation 0.571 0.871 0.374 0.523
One-shot prompting 0.862 0.889 0.893 0.891
Two-shot prompting 0.874 0.886 0.919 0.902
Three-shot prompting 0.858 0.872 0.907 0.889
Llama 2
Baseline prompt 0.846 0.880 0.873 0.877
Data segmentation 0.625 0.625 1.000 0.770
Task segmentation 0.613 0.870 0.490 0.627
Data & Task segmentation 0.846 0.847 0.921 0.882
Two-shot prompting 0.623 0.623 1.000 0.768
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precision increased by +8.06%, and overall leading to a decrease in the F1 score of 
−6.46%. This suggests that asking for each practice individually may lead to a loss 
of a broader contextual understanding of the model, negatively impacting its overall 
performance. Finally, Data and Task segmentation showed the worst results, drop-
ping recall by −59.6% and decreasing F1 score by −40.97%, reinforcing the impor-
tance of context for ChatGPT when analyzing privacy policies.

It’s worth noting that while Data segmentation showed a similar performance to 
keep the whole policy, it increases the cost of the queries since they are computed 
according to the prompt and response size and not specifically by the number of 
requests. Furthermore, it also increases the processing time for each policy, as more 
requests (as many as policy paragraphs) must be processed. Thus, we have discarded 
this option in favor of processing the whole policy.

Few-shot prompting. Few-shot prompting [43] refers to providing a set of exam-
ples (shots) with the prompt to guide the model. We have tested this technique, 
including in the prompt one, two, and three examples-randomly chosen-of paragraph 
annotations. The best result was obtained with two-shot examples, showing a sig-
nificant improvement in the metrics (+3.31% accuracy, +0.0% recall, +4.29% preci-
sion, +2.18% F1 score).

Final prompt design. Fig.  1b presents the prompt configuration that our tests 
have consistently found to be most effective in identifying privacy practices. In this 
optimized prompt structure, the Data segment is introduced in an initial message, 
followed by the Task segment in a subsequent message. This Task segment incor-
porates definitions of the targeted practice-in this instance, data types-along with 
the same Output format instruction used in the Baseline prompt and a Few-shot 
learning component. The Few-shot learning part includes two illustrative examples 
(Two-shot) of processing paragraphs from privacy policies and the corresponding 
expected outputs.

4.3  Parameter tuning

ChatGPT offers a number of parameters that can be configured to modify its 
responses [41], namely temperature, top p, and system inputs. For testing these 
parameters, we used the final prompt design presented in Fig. 1b.

Temperature. Temperature is a hyperparameter that allows controlling the ran-
domness and creativity of the text generated by a GenAI. If the temperature is low, 
the model will probably produce the most “correct” text, but with little variation. 
Conversely, a higher temperature value shows greater variation (i.e., creativity). 
Lower temperature values are preferable for the development of a deterministic 
framework. We automated queries to ChatGPT to measure this feature, using the 
same prompt for all 33 privacy policies in the experimental dataset and perform-
ing the requests on 3 different days and at 5 different times of the day (from 9 am 
to 9 pm). This amounts to 495 different requests and responses, and we observed 
52 discrepancies (i.e., different responses compared to the typical answer), which 
means 89.5% consistency in ChatGPT responses. This-although far from absolute 
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determinism—highly increases the 59.6% percentage of determinism achieved with 
the default temperature value of 1.0.

The GPT-4 Turbo model introduced a new feature called seed, specifically for 
obtaining consistent responses over time with the same prompt. Even though deter-
minism is its declared purpose, we observed that using a seed value and default tem-
perature provided only 84.65% of similar responses. Nonetheless, the combination 
of 0 temperature and seed shows 90.51%, being the most reliable combination of 
these two parameters.

In our evaluation of the ChatGPT’s performance across different temperature set-
tings, we found that higher temperature values inversely impact the consistency of 
the metrics, with deterministic responses being optimal. This tendency is notable as 
the quality of the outputs deteriorates with increasing temperature. Concurrently, a 
manual inspection of the responses revealed a propensity for incomplete data type 
coverage. Specifically, responses frequently reported only the initial data type que-
ried. This issue not only aggravates the decline in the F1 score but also results in 
a significant proportion of the data types-nearly half-remaining unaddressed in the 
responses. Such findings underscore the importance of temperature configuration 
in ensuring both the accuracy and completeness of the information extracted by 
ChatGPT.

Top p. Top p, or “nucleus sampling”, consists of selecting the next token from 
the “nucleus” or subset of the vocabulary that constitutes the cumulative probability 
mass of the top p most probable tokens. For example, setting top_p = 0.1 means 
only tokens comprising the top 10% probability mass are considered [41]. We have 
observed little performance variability when testing different values of top_p = 
[0, 1] while keeping the default temperature value ( T = 1 ). Furthermore, in its offi-
cial documentation, OpenAI recommends modifying the temperature value or the 
top p parameter, but not both simultaneously. Thus, we chose the default value of 
top p for our implementation and set the temperature to zero. These settings allow us 
to obtain more reproducible results.

System inputs. Using the OpenAI API, messages can be assigned to different roles 
(i.e., user, assistant, or system), where the system instruction can give high-level 
instructions for the conversation. We tested two system instructions: (1) “You are a 
helpful assistant with extensive knowledge in data protection and privacy engineer-
ing.” and (2) “You are a helpful assistant with extensive knowledge in data protec-
tion and law”, which specifically indicate areas of knowledge that are important for 
our task analyzing privacy policies. Neither of the two system instructions improved 
the results obtained but rather worsened them.

4.4  Fine‑tuning

OpenAI facilitates model customization through fine-tuning, which involves re-
training a model on a specific dataset to enhance its performance. This approach is 
beneficial for augmenting response consistency and can enable the use of shorter 
prompts while still achieving the desired format. During our experimentation phase, 
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fine-tuning was available only for the gpt-3.5-turbo-0613 model. Thus, we tested the 
effect of model fine-tuning using this ChatGPT version.

The gpt-3.5-turbo-0613 model sets a maximum prompt size of 4096 tokens. 
Thus, we segmented the policies into smaller subsets (chunks), each conforming to 
the condition that the combined length of the policy text (T) and prompt (P) did not 
exceed 4096 tokens ( T + P < 4096 ). This process led to the creation of a training set 
comprising 73 chunks, aligned with the manual annotations from the MAPP corpus 
and subjected to a default training configuration of three epochs as determined by 
OpenAI based on dataset size.

This fine-tuned model demonstrated superior performance when compared to the 
baseline (not fine-tuned) model: accuracy increased from 0.677 to 0.867, precision 
increased from 0.519 to 0.803, and the F1 score increased from 0.670 to 0.803. Still, 
it could not beat the GPT-4 Turbo model (which does not require chunking the poli-
cies thanks to the 128K tokens limit), probably due to its ability to retain context 
(see Table 3).

4.5  Validation

We first applied our proposed configuration framework to the MAPP ground-truth 
control set, comprising 31 privacy policies, utilizing the prompt, parameters, and 
model based on our findings in prior sections. The prompt employed is the one 
described in Sect.  4.2. The selection of parameter values was based on determin-
ism consideration: temperature = 0 , a fixed seed, and top_p = 1 (the default setting). 
Finally, the GPT-4 Turbo model is employed for its performance, speed, and sig-
nificantly higher input token limit balance. This configuration yields an accuracy of 
0.916, a recall of 0.976, a precision of 0.898, and an F1 score of 0.935 on the control 
set of the MAPP corpus.

We further validated our prompt design and model configuration against a larger 
ground truth, i.e., OPP-115 dataset [14], renowned for its fine-grained manual anno-
tations of privacy practices. This validation yielded consistent results: 0.904 accu-
racy, 0.912 recall, 0.949 precision, and 0.930 F1 score, indicating that our proposal 
exhibits robust performance even when applied to a larger and more varied set of 
privacy policies.

Table 3  Comparison between 
the baseline and the fine-tuned 
GPT−3.5 model analyzing 
privacy policies by chunks and 
GPT-4 Turbo model analyzing 
privacy policies as a whole

Metrics Chunked privacy policy processing Whole privacy 
policy process-
ing

GPT-3.5-
turbo-0613 (fine-
tuned)

GPT-3.5-
turbo-0613

GPT-4 Turbo

Accuracy 0.867 0.677 0.916
Precision 0.803 0.519 0.898
Recall 0.803 0.944 0.963
F1 score 0.803 0.670 0.935
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5  Demonstration

This section aims to demonstrate why LLMs, specifically ChatGPT, can be con-
sidered a competent technique for privacy policy analysis at scale. First, we com-
pare ChatGPT to its closest GenAI rival, Llama 2, in terms of extracting the same 
privacy practices across identical test sets. We then compare ChatGPT with state-
of-the-art statistical and symbolic NLP approaches to evaluate its performance 
and verify whether it can rival or even replace them. Finally, we analyze our pro-
posal’s generalization capabilities for identifying other privacy practices, namely 
the declaration of international transfers in privacy policies.

5.1  Comparison with Llama 2

Llama 2 [33] is a family of open-source LLMs released by Meta that competes 
with ChatGPT in the GenAI space. Specifically, Meta has released versions with 
7, 13, and 70 billion parameters, each with a fine-tuned “Chat” version optimized 
for dialogue. For a more direct comparison with the ChatGPT models, we focus 
on the chat variant of each of the Llama 2 models.

We downloaded the 7B directly from Meta via their GitHub repository and ran 
it using four NVIDIA GeForce RTX 2080 Ti GPUs. Due to GPU constraints, we 
used the Python library from Together.AI to run the 70B model [44]. We initially 
tried to run the 13B model in our local environment, but as we achieved poor per-
formance, we also used the Together.AI installation.

Prompt. We departed from the final prompt design shown in Fig. 1b and fol-
lowed another split testing process to identify the best-performing Llama 2 
prompt design. All the Llama 2-Chat models have a 4,096 token limit, which 
forced us to segment the privacy policies (i.e., the Data part) to ensure that our 
prompts are under the maximum token limit. Additionally, we removed the few-
shot learning part from the prompt, as this yielded worse performance in our 
experiments with Llama 2. We observed that this technique resulted in outputs 
that did not conform to the requested format and additionally caused overfitting 
to the provided examples. Finally, we tried segmenting the Task in the prompt by 
asking for each data practice at a time, improving the results. Table 2 summarizes 
the different tests and the resulting performance.

Parameters. Just as for the ChatGPT models, we parameter-tuned across the 
temperature and the top p values. Similar to observations with ChatGPT, our 
experiments suggest setting a temperature value of 0 and a default top p of 1.0 as 
the best-performing configuration.

We carried out our experiments with the three Llama 2 versions. As the Llama 
2 70B-Chat model consistently showed better results, we used this version to 
assess its performance against the MAPP control set (31 annotated policies) 
(Table  4). Llama 2 demonstrates comparable but slightly lower performance in 
identifying privacy practices in this dataset compared to our ChatGPT-4 proposal.
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We further evaluated the performance of the Llama 2-70B configuration 
against the OPP-115 dataset. The results (Table  4) show that Llama 2 obtains 
worse performance against this new dataset, suggesting that, unlike ChatGPT, 
this Llama 2 configuration does not generalize well to different datasets.

5.2  Comparison with state‑of‑the‑art techniques

We propose LLMs and, specifically, ChatGPT as a new technique for automating 
privacy policy information processing and extraction. To confirm it as such, we 
compare its performance in extracting fine-grained practices from policies with 
state-of-the-art statistical and symbolic approaches.

5.2.1  Statistical approaches

In this study, we conducted a comparative analysis of our configuration framework 
proficiency in identifying fine-grained privacy practices against statistical classifiers 
based on Support Vector Classifiers (SVC)–a subtype of SVM-, which were trained 
and validated using the APP-350 corpus [3]. To ensure a rigorous comparison, the 
same policy dataset was employed to evaluate the performance of both methods.

The primary objective was to assess ChatGPT’s ability to accurately identify 
particular types of personal data collection as stated in privacy policies. For this 
purpose, we selected 10 distinct data types, with an emphasis on higher specificity 
(for instance, choosing “Contact email address” over the broader “Contact informa-
tion”), spanning various categories such as contact data, identifiers, and social login 
data.

Table  5 delineates the comparative performance of ChatGPT against the pre-
trained SVC classifiers for identifying each specified data type. The results indi-
cate a comparable level of performance across most data types. However, a notable 
exception was observed with the SIM identifier, where ChatGPT’s performance was 
significantly lower despite achieving 100% precision. A detailed manual review of 
the annotations for this data type in the original policies revealed a common annota-
tion issue: Human annotators wrongly coded this data type. Specifically, the annota-
tors coded “device serial number” under the “SIM serial number” category. How-
ever, the former is issued by the device manufacturer, while the latter is provided 
by the mobile carrier. This discrepancy likely contributed to the lower F1 score for 
ChatGPT in identifying the SIM identifier.

Table 4  Metrics comparison 
between the best-performing 
Llama 2 70B-Chat (Llama 
2) and ChatGPT-4 Turbo 
configurations

Accuracy Precision Recall F1 score

MAPP Llama 2 0.846 0.847 0.921 0.882
GPT-4 Turbo 0.916 0.898 0.976 0.935

OPP-115 Llama 2 0.749 0.700 0.814 0.753
GPT-4 Turbo 0.904 0.949 0.912 0.930
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Excluding the analysis of the SIM serial identifier, which was identified as an 
anomaly, the comparative evaluation yielded an average F1 score of 84.1% for Chat-
GPT, as opposed to 86% achieved by the SVC-based classifiers for the selected data 
types. This outcome illustrates that while traditional SVC-based classifiers are rec-
ognized for their reliability and accuracy, ChatGPT presents a comparable level of 
performance. ChatGPT offers the added advantage of significantly simpler usability, 
making it a viable alternative for similar tasks in data practice identification.

5.2.2  Symbolic approaches

PolicyLint [21], a tool designed to analyze privacy policies, employs a symbolic 
approach based on ontologies to detect contradictions in statements regarding per-
sonal data collection and sharing. This tool identifies negative sentences, which are 
often challenging for conventional machine learning techniques. The public reposi-
tory of PolicyLint’s code [45], as referenced, was utilized to process the privacy pol-
icies in our control set, facilitating a comparative analysis with our proposal.

PolicyLint operates by identifying sentence structures characterized by [actor] 
[action] [data_object] [entity]. Here, “actor” signifies a first or third party involved 
in data handling, “action” denotes the nature of data interaction (positive or nega-
tive, such as collection or non-collection), “data_object” pertains to the type of data 
in question, and “entity” refers to the recipient of the data (for instance, advertisers).

Given that the data_objects in PolicyLint do not align format-wise with those in 
our MAPP corpus, a manual matching process was undertaken by two authors to 
correlate PolicyLint’s classifications with the data types in our corpus. This match-
ing was independently conducted, followed by an agreement phase for resolving 

Table 5  ChatGPT vs. traditional machine learning classifiers’ performance for identifying first-party data 
collection per data type

Data type ChatGPT SVC classifiers

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

Contact Email 
Address

95 95 95 97 94 96

Contact Phone 
Number

100 85 92 94 94 94

Identifier Cookie 92 97 95 95 100 98
Identifier IMEI 83 88 86 94 94 94
Identifier Device ID 74 89 81 96 87 91
Identifier MAC 94 84 89 88 79 83
Identifier Mobile 

Carrier
79 90 84 100 57 73

Identifier SIM 
Serial

100 13 22 73 100 84

Location WiFi 70 58 64 48 92 63
Social login 77 65 71 83 81 82
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discrepancies. The matching criteria were aligned with the definitions provided 
in the MAPP corpus. Subsequently, the comparative performance metrics of both 
methods were analyzed and presented in Fig. 2.

Our analysis revealed that PolicyLint exhibits high precision, surpassing the met-
rics its authors reported. This discrepancy might stem from our methodology, where 
we assess whether a data type is identified at least once in a policy, instead of Poli-
cyLint’s validation across all relevant statements. However, PolicyLint’s approach 
overlooks negative cases, leading to a lower recall. Overall, our evaluation indicates 
that our ChatGPT configuration framework significantly outperforms PolicyLint’s 
F1 score, highlighting its efficacy in extracting and analyzing data practices from 
privacy policies.

5.3  Generalization capabilities

The proficiency of ChatGPT in extracting data collection and sharing practices from 
privacy policies has been notably demonstrated in our study. In this section, we 
extend the evaluation to assess ChatGPT’s generalization capabilities in identifying 
a broader range of practices within privacy policies. This extension is grounded in 
our prior research [46], which focused on analyzing privacy policies to find disclo-
sures related to international data transfers. This previous study produced a dataset 
(IT100) comprising 100 privacy policies where privacy practices related to interna-
tional data transfers were manually annotated by legal experts [15]. A Support Vec-
tor Machines (SVM)-based classifier was trained to identify these specific practices.

In Fig.  3, we present the comparative analysis of the performance metrics 
between our configuration proposal of ChatGPT and the SVM-based classifier, 
utilizing the IT100 dataset for evaluation. ChatGPT was configured as per the 

Fig. 2  Metrics comparison between the ChatGPT-based method and PolicyLint
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parameters delineated in Sect.  4, which included an instantiation of our enhanced 
prompt in Sect. 4.2, and settings like temperature=0, top_p=1, and an absence of 
system_input. The results displayed by ChatGPT were significantly superior in most 
metrics, reinforcing its efficacy in extracting information about diverse practices 
from privacy policies.

6  Discussion

ChatGPT demonstrates a more balanced and adaptable performance in privacy 
policy analysis compared to traditional symbolic and statistical methods, overcom-
ing the limitations of manual annotations and varying data across different corpora. 
Symbolic methods are characterized by their rigidity, which is reflected in their per-
formance metrics. High precision in symbolic methods indicates their well-defined 
patterns and rules are closely aligned with specific instances in the data. However, 
this precision comes at the cost of completeness, as evidenced by their lower recall. 
In contrast, ChatGPT demonstrates a more balanced performance, achieving a nota-
bly higher F1 score than PolicyLint. This suggests that ChatGPT—and our proposed 
configuration, while less rigid in its approach, captures the breadth of privacy prac-
tices within policies more effectively.

When comparing ChatGPT with statistical methods such as SVM, we find that 
these traditional classifiers perform similarly in identifying certain data types. How-
ever, ChatGPT excels particularly in recognizing practices like international data 
transfers, which are complex and multifaceted. This superior performance is nota-
ble, given that statistical methods often depend on extensive manual annotations, 
which can introduce errors. As seen in the Identifier SIM Serial case in Table  5, 

Fig. 3  Metrics comparison between the ChatGPT and SVM machine learning classifier performance 
identifying international data transfer practices
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such annotation errors can significantly impact classifier performance. Wagner et al. 
[47] supports this observation, indicating that the average agreement among human 
annotators for attribute values is considerably lower than for top-level categories. 
This discrepancy highlights the challenges in achieving consensus among annotators 
and the advantage of ChatGPT’s approach, which is not constrained by the limita-
tions of manual annotations.

Furthermore, our analysis of different corpora, specifically the MAPP and OPP-
115 datasets, sheds light on the variance in annotations across datasets. The per-
formance disparities observed for Social media data and Personal identifier data 
between these two corpora suggest that the annotations for these data types likely 
vary, underscoring the issues associated with training classifiers on manually anno-
tated data [48]. This reinforces the need for approaches like ChatGPT that rely less 
on such annotations, offering a more adaptable and potentially more accurate solu-
tion for privacy policy analysis.

Economic considerations play a significant role in the choice of the technique 
to process privacy policies. Manual annotators in the United States are reported 
to earn approximately $8.5 per hour, while rates in lower-income countries range 
between $3–$4 per hour [49]. However, the annotation of privacy policies demands 
legal expertise for accurately identifying data protection practices, entailing a higher 
pay rate, assumed here at a minimum of $10 per hour. For the MAPP corpus, three 
experts annotated each policy, averaging 1 h and 52 min each [13]. Multiple annota-
tions of the same content by different experts ensure reliable and high-quality data 
where inter-annotation agreement can be measured. Previous research [46] demon-
strated that training classifiers with 100 policies can be sufficient, which raises costs 
by up to $5,601.

Setting aside the technical expertise required for classifier development, the cost-
effectiveness of traditional classifiers becomes behooveful with GPT-4 Turbo at 
approximately 81,500 privacy policies and with GPT−3.5 Turbo at around 825,000 
policies (Fig. 4). This cost difference suggests that depending on specific application 
needs and constraints, GPT−3.5 Turbo, with an F1 score of 87.2% measured on the 
MAPP corpus control set, might be a pragmatic choice compared to GPT-4 Turbo, 
which achieved an F1 score of 93.5%1 in our evaluation. Furthermore, Llama 2 mod-
els, specifically 7B and 70B, may be considered in terms of cost discussion. Both 
models were publicly released for free use, but our hardware limitations imposed by 
the latter forced us to use Together.AI API for that version. The current API cost for 
the Llama 2-70B model is 10% lower than the GPT−3.5 Turbo model while show-
ing an even higher performance −88.2% F1 score-making it even more convenient 
in terms of cost by performance. Llama 2-7B has significantly lower computational 
requirements, leading to no other cost but computation and achieving an 80.1% F1 
score. Thus, GPT-4 Turbo offers the best performance of the LLMs compared, but at 
the highest cost. Whereas if the computing capabilities are sufficient to run it locally, 
Llama 2-70B offers good performance at a low cost.

1 This difference is not only due to the model performance but also because the few-shot prompting tech-
nique that can be applied to the GPT-4 Turbo model thanks to its increased token limit.
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In assessing the processing capabilities of ChatGPT models, our analysis indi-
cates a marked efficiency advantage over traditional machine learning and symbolic 
AI techniques. Acknowledging the operational constraints imposed by OpenAI on 
these models, specifically regarding token throughput per minute is critical. GPT-4 
Turbo is limited to 300,000 tokens per minute, while GPT−3.5 Turbo can process up 
to 1,000,000 tokens within the same timeframe.

Fig. 4  Cost Comparison of analyzing privacy policies with ChatGPT API

Fig. 5  Time comparison between ChatGPT models and SVM to process privacy policies
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With an average of 6652 tokens required in average to fully process a privacy 
policy, GPT-4 Turbo can analyze up to 45 policies per minute, in contrast to the 150 
policies per minute capability of GPT−3.5 Turbo. Figure 5 depicts this variance in 
processing capacity, with GPT-4 Turbo necessitating slightly more time for large-
scale privacy policy analyses when compared to GPT−3.5 Turbo. Furthermore, the 
SVM-based classifier takes approximately double the time of the slower GPT model 
to process an equivalent number of policies. In stark contrast, PolicyLint, while 
being at the forefront of privacy policy analysis symbolic-based tools, demands 
up to six times the processing time of GPT−3.5 Turbo for comparable tasks. The 
two versions of Llama 2 show remarkably different processing times. The Llama 
2-7B, locally analyzing each policy at once (truncating policies when length limit 
required), shows a similar processing time compared to GPT-4 Turbo, while Llama 
2-70B through Together.AI API (analyzing policies by chunks), shows the slowest 
performance of all techniques.

These findings underscore the superior speed of LLM models and highlight the 
need to balance performance with processing time, especially when scaling to ana-
lyze vast numbers of privacy policies. Thus, organizations may find the trade-off 
between the slightly lower speed of GPT-4 Turbo and its enhanced accuracy accept-
able, particularly in scenarios where quality of analysis is paramount. Conversely, 
for applications where time efficiency is a priority, GPT−3.5 Turbo presents a com-
pelling option, offering rapid analysis with a modest compromise in performance 
metrics.

For the GPT models, parallel processing can be employed to concurrently analyze 
up to 150 and 45 policies per minute for GPT−3.5 and GPT-4, respectively, adher-
ing to the stipulated token rate limits. To scale up concurrent processing capabilities 
with ChatGPT, users may opt for multiple paid accounts, which entails additional 
costs due to the subscription requirements for accessing the API via ChatGPT Plus. 
Another avenue is to request OpenAI for elevated rate limits, a request that hinges 
on the company’s approval. Anticipation of expanded rate limits by OpenAI in the 
future could potentially democratize access to more extensive parallel processing for 
all users, thereby broadening -even more- the scope of large-scale privacy policy 
analysis.

The rapid progression of generative AI technology is evident in the quick suc-
cession of ChatGPT models introduced. Within the span of mere months, we 
have witnessed the release of successive ChatGPT iterations, namely GPT−3.5 
Turbo, GPT-4, and GPT-4 Turbo. Alongside the expected speed and cost effi-
ciency enhancements, a notable shift has been observed in model determinism. For 
instance, the determinism observed in ChatGPT−3.5 (99.19%) significantly exceeds 
that of GPT-4 Turbo, suggesting a potential trade-off between response variability 
and model robustness.

This rapid succession has introduced variations in the models’ performance, par-
ticularly regarding prompt responsiveness and temperature settings. Current outputs 
from most recent models align more closely with expectations even at increased 
temperature settings, evidencing an enhanced capacity of ChatGPT to interpret 
prompts with fewer instructions and diminishing the necessity for techniques such as 
prompt augmentation.
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The execution speeds of the Turbo models are noteworthy, achieving significant 
throughput without compromising performance for the task at hand. Moreover, the 
cost efficiencies introduced with these models -threefold less for GPT-4 Turbo and 
tenfold less for GPT−3.5 Turbo-consolidate ChatGPT’s position as a vying competi-
tor to state-of-the-art tools for large-scale studies.

We have observed that the token limit per minute has substantially increased-up 
to 30 times for GPT-4 and nearly 10 times for GPT−3.5 Turbo. This escalation, cou-
pled with the models’ improved response times, results in more expedient process-
ing of privacy policies, as evidenced in Fig. 5. Regarding F1 score performance, the 
new GPT-4 Turbo model remains consistent with its predecessors, albeit with nota-
ble variations: a 1.36% increase in the F1 score for the MAPP corpus and a similar 
decrease for the OPP-115. The intricacies of these models make it challenging to 
pinpoint the exact causes of these variations, but it is remarkable that the optimiza-
tion inherent in the Turbo models has not detrimentally impacted performance for 
this specific task.

7  Conclusion

Throughout this article, we have substantiated the applicability of LLMs in analyz-
ing and extracting privacy practices from privacy policies. Specifically, ChatGPT 
has proven to be as effective as traditional NLP techniques, offering significant 
advantages in terms of cost, runtime, and ease of development. This article  also 
reported on prompts and configurations of LLMs, that were found to yield particu-
larly high performance in identifying and categorizing a variety of data practice dis-
closures in the text of privacy policies. Results reported in this paper are not limited 
to the tuning of parameters but also include comparisons of zero-shot and few-shot 
learning approaches.

Overall our results are consistent with those reported in other domains and sug-
gest that LLM techniques can be configured to  outperform more traditional NLP 
approaches to analyzing the text of privacy policies. Future work will focus on inte-
grating LLM-based analysis   into automated systems for privacy compliance. We 
expect that this approach will yield more efficient and accurate tools for consumers, 
enterprises and regulators.
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