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Abstract

Privacy policies are documents that describe what data is col-
lected by a website or an app and how that data is handled.
Privacy policies are often long and difficult to understand. Re-
cently people have started to turn to Natural Language Pro-
cessing (NLP) to automatically extract statements from the
text of these policies. This article reports on a study to eval-
uate the benefits of using word embeddings in this endeavor.
Specifically, we use 150,000 privacy policies to build word
vectors in an unsupervised manner. This includes evaluating
the benefits of privacy specific word embeddings. Evaluation
is conducted on the OPP-115 corpus of privacy policy anno-
tations. By building privacy-specific embeddings we hope to
accelerate research at the intersection of privacy policies and
language technologies.

1 Introduction

Privacy policies tend to be long and complex documents that
are often difficult to understand. They are the primary mech-
anism to inform users about the collection and handling of
their data. Over the past several years, there has been a grow-
ing interest in automating the understanding of privacy poli-
cies using Machine Learning and Natural Language Process-
ing techniques (e.g., (Sadeh et al., December 2013; Wilson
et al., 2016; Sathyendra et al., 2017b; Liu et al., 2016b)).
These techniques rely on a small amount of supervised train-
ing data. Unfortunately, as is the case in many other do-
mains, supervised training data requires expert annotation
and is expensive to obtain, limiting the size of available cor-
pora. On the other hand, because privacy policies are ubiq-
uitous, unlabeled privacy policy data is plentiful and easy to
obtain. In this work, we examine leveraging this unlabeled
data to train word embeddings for the privacy domain. We
demonstrate that these word embeddings yield meaningful
improvements in performance on the popular OPP-115 (Wil-
son et al., 2016) benchmark for segment labeling in policies.
Performance improvements are observed across a diverse set
of data practices found in the OPP-115 corpus. For evalua-
tion we use the same test set which was provided by Wilson
et al. (2018).

The contributions of our paper can be summarized as fol-
lows.

1. We investigate the utility of in-domain word embeddings,
and find that they indeed help over generic word em-

beddings to obtain better segment-labeling performance
in the privacy domain. We observe meaningful improve-
ments on the OPP-115 corpus. We measure an average
macro F1 of 0.803 on the test set.

2. We empirically investigate the relationship between di-

mensionality of the word embeddings and segment label-
ing performance. We look at the performance across a di-
verse set of important data-practice categories when the
dimensionality of the word embeddings changes.

3. We investigate the number of policies that are required

to train expressive word embeddings. We have access to
over 300,000 privacy policies which we scraped from the
Google Play Store. We investigate the amount of poli-
cies which are needed to get good results on the OPP-115
dataset. Henceforth, we call this the policy corpus. It is to
be noted that we did not need all 300,000 privacy policies
as the performance saturates fairly quickly. Incidentally,
we would have needed significantly more computational
resources to train word embeddings on all 300,000 poli-
cies. This is not to say that word embeddings trained on
all 300,000 policies might not have helped in the context
of different, possibly more subtle data practices than those
considered in the OPP-115 dataset.

4. We present a qualitative analysis of representations of

words in vector space in the privacy domain. We want to
understand how in-domain word embeddings differ from
the generic word embeddings which are domain indepen-
dent.

2 Related Work
Word embeddings in NLP

Word embeddings have a rich history in the Natural Lan-
guage Processing community, and have proven to be use-
ful in a wide variety of tasks. Work on neural models for
formulating word representations was reported as early as
2003 by Bengio et al. (2003). They used a simple feed for-
ward neural network to capture the language model, thereby
building word embeddings. Mikolov et al. (2013) introduced
Word2Vec, a fast and scalabale way of computing word
vectors on large corpora by using sub-sampling and nega-
tive sampling techniques. Pennington, Socher, and Manning
(2014) introduced GloVe embeddings which captured both



the local context and the global context of sentences. Fast-
Text (Bojanowski et al., 2016) is a way to train a model to
use the sub-word information instead of considering words
as discrete tokens. It thus captures local context and is ro-
bust to perturbations. Sub-word information helps us capture
better local context, and thus we decide to use FastText for
training our word embeddings.

Word embeddings and privacy policies

Harkous et al. (2018a) have previously used FastText on pri-
vacy policies to get word embeddings. However, these em-
beddings are not publicly available, nor were ablation stud-
ies performed to determine their utility. In addition, they
were used for question category identification, rather than
segment labeling as in (Wilson et al., 2016). Wilson et al.
(2016) have done a thorough job in creating the OPP-115
dataset and also creating good baselines for the same. In this
work, we fill this gap by training word embeddings from
150,000 privacy policies and demonstrating their utility over
generic word embeddings. We show that our neural models
with the help of our privacy embeddings outperform previ-
ous benchmarks on the OPP-115 dataset. Liu et al. (2018)
have tried using pre-trained word embeddings with deep
models to classify the OPP-115 data. However, on classes
with lower numbers of positive examples, their performance
seems to drop. In order to address this issue and to be more
consistent with common machine learning practices, we do
two things. First, we train our in-domain word embeddings
to check if we will get better results on these smaller pop-
ulation classes. Second, we split the data into 5 folds. We
use 4 folds of data to train our machine learning model. We
call this the train set. We used the other fold for fine tuning
our model. We call this the dev set. We choose the hyper-
parameters of our model using the dev set. We evaluate our
model on the test set which was mentioned earlier. This way
of separating the dataset helps ensure that we are not fit-
ting your model to get good performance on the test set and
helps us to be more robust to unseen data. We report our av-
erage F1 on all the folds of the dev set along with standard
deviation. We also report our average F1 on the test set for
our best performing model. Sathyendra et al. (2017a) used
Word2Vec and trained privacy specific embeddings for an
extrinsic task of question-answering. However, the authors
do not report evaluating the performance of word embed-
dings. In contrast, our goal in the work reported herein is to
shed light on and quantify the benefits of word embeddings
in the privacy policy domain.

3 Overall Approach

Figure 1 describes our approach to building the word embed-
dings and then using them to perform the segment classifica-
tion task on the OPP-115 corpus. We give a brief description
of each of the modules of our system.

FastText

Fast text was introduced by Bojanowski et al. (2016). We
leverage this algorithm to learn word embeddings for the
words found in privacy policies scraped from the Google
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Figure 1: High Level Architecture of our approach

Play Store. We then do transfer learning by using these em-
beddings in the context of website privacy policies. It should
be noted that these two domains have some meaningful over-
lap, with many privacy policies written to jointly address
data practices associated with both mobile apps and web-
sites operated by the same entity.

Embeddings Store

We store our learned embeddings for future access. We cre-
ated separate word embedding stores for the different kinds
of embeddings we built. We experimented with the dimen-
sionality and the amount of data required to train good word
embeddings. These results are discussed in the “Results and
discussions” section.

Text to Word Vector Converter

We have to convert the text representation of the OPP-115
corpus to real valued representation so that our neural mod-
els can start using them. But, if we have a large vocabulary it
becomes difficult for networks to fit the data. So we restrict
our vocabulary size to the top 50,000 words in the vocab-
ulary. We also preprocess the data to convert all the words
to lower case. We use all the pre-processing techniques used
by Liu et al. (2018) to get privacy policy segments.

Neural Models

We try several neural architecture models. Following
Faruqui et al. (2014) and Mikolov et al. (2013) we decided
to use a simple feed-forward network by averaging these
embeddings. We take the word vectors corresponding to ev-
ery word in the segment and average them to form the in-
put layer to our Multi Layer Perceptron. Not surprisingly,
this model generally gives very good results on the OPP-115
dataset as it acts as a bag of words model. This also shows



that our word embeddings are of high quality. We also re-
port on performance with deep convolutional models in the
experiment section.

Statistics Generator

OPP-115 (Wilson et al., 2016) is a small dataset and it is
easy to get varying F1 scores on different runs of the neu-
ral network. The F1 score also varies when the fold of the
data being tested on changes. In this paper, we want to set a
standard when using this corpus. We take the view that one
should report the mean F1 and standard deviation for each of
the folds tested on. We used 5-fold validation. So this com-
ponent of our system generated the statistics after training
the network.

Embeddings Visualizer

It is a well documented fact that words which appear in sim-
ilar contexts must be close to each other in the vector space
(Mikolov et al., 2013). Our word embeddings are of 300 di-
mensions. In order to visualize these embeddings we have to
convert them to 2D vectors and plot them. We use Principal
Component Analysis (PCA) in order to do this. We exam-
ine the word vectors on a 2D plot. We report on and dis-
cuss differences between the plots of generic embeddings
like GloVe (Pennington, Socher, and Manning, 2014) and
our in-domain word embeddings.

4 Distribution of data practices in the
OPP-115 dataset

The OPP-115 data-set is a multi-label classification prob-
lem which has skewed counts on some of the classes. For a
detailed understanding of these privacy policies we ask the
reader to refer to: Wilson et al. (2016). We provide a distri-
bution of the classes in Figure 2.

Some of the classes in this dataset have fairly low counts
of positive examples, making it difficult for machine learn-
ing models to learn the classification. For instance, in pre-
vious publications, the authors had found it hard to identify
segments associated with the “Data retention” class, as this
class only has a few positive instances in the corpus (Wilson
etal., 2016; Liu et al., 2018). In contrast, our results suggest
that we are able to get significantly better F1 scores on these
types of classes.
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Figure 2: The counts of the number of positive ex-
amples in the OPP-115 data-set for each of the cat-
egories.
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Category Avg F1 | Std Dev
First Party Collection/Use 0.783 0.02
Third Party Sharing/Collection | 0.753 0.02
User Choice Control 0.641 0.06
Data Security 0.795 0.02
Intl and Specific Audiences 0.88 0.02
Access, Edit and Delete 0.716 0.03
Policy Change 0.88 0.06
Data Retention 0.48 0.01
Do Not Track 0.949 0.06

Table 1: Logistic Regression model’s result on the dev set
across different data-practices in the OPP-115 corpus.

5 Experiments

We performed several experiments before arriving at our fi-
nal word embeddings. Each of our experiment was run on
five folds of data. We report the mean and standard devia-
tion of the F1 scores for the validation set. We also report
the macro F1 score.

Logistic Regression

We used our word embeddings, averaged them and used that
as the input to the logistic regression model. The results of
the model are shown in Table 1.

We see that our baseline model has some improvement
in performance over the results reported by Wilson et al.
(2016). These results suggest that our word embeddings in
the privacy domain yield important performance improve-
ments. We get a macro F1 of 0.76 compared to macro F1 of
0.67 for the results reported in Wilson et al. (2016).

Feed-forward network

Feed-forward neural networks are powerful machine learn-
ing models which perform really well on classification tasks.
We used a feed-forward neural network as shown in Fig-
ure 3. The input layer to this network was the averaged em-
beddings of all the words in the sentence.

More formally, given a list of words as a segment, we per-
form the following:

wordVectors = getWordVectors(wy, wa, ws...wy, )

averageEmbeddings = > . vector; /n

1EN

Here wq, w»...w,, are the words of a sentence. We convert
these text of words into their vector representation to get
vector; . We then average these vectors to get averageEm-
beddings .

These average embeddings were then used as the input
layer to a two layer network. Each layer of the network
had 64 Rectified Linear Unit (Relu) (Nair and Hinton, 2010)
units. It is very easy to overfit on the training data as the size
of the OPP-115 corpus is not too big. In order to circumvent
this issue, we use dropouts (Srivastava et al., 2014), with a
drop rate of 0.3 in the first layer and 0.2 in the second layer.
In the final layer we used a softmax to predict if the segment
belonged to a certain class or not. Henceforth, we call this
model CBOW/(Continuous Bag Of Words). The network ar-
chitecture is shown in Figure 3:
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Figure 3: Neural models which gave the best performance

Category Avg F1 | Std Dev | Test-F1
First Party Collection/Use 0.814 0.01 0.801
Third Party Sharing/Collection | 0.791 0.02 0.79
User Choice Control 0.692 0.07 0.712
Data Security 0.838 0.01 0.837
Intl and Specific Audiences 0.898 0.03 0.871
Access, Edit and Delete 0.757 0.04 0.823
Policy Change 0.917 0.08 0.875
Data Retention 0.55 0.05 0.58
Do Not Track 0.949 0.07 0.941

Table 2: Feed-forward Network’s result on the dev and test
set across different data-practices in the OPP-115 corpus.

This approach of text classification is generally consid-
ered to be a strong baseline by the NLP community (e.g.,
Faruqui et al. (2014) and Mikolov et al. (2013)).

Our CBOW Model gave us the best results. We report our
accuracies in Table 2. It can be seen that our results are the
state of the art on this dataset. Harkous et al. (2018b) show
a higher F1 than ours. But these results are reported on a
small set of user queries which by their nature are different
from the segment classification task described in Wilson et
al. (2016).

We compare our results with the F1 score of Wilson et al.
(2016) and Liu et al. (2018).

We get amacro F1 of 0.803 when compared to their macro
F1 of 0.667 on the classes which we have chosen to eval-
uate our model. We also compare our results with Liu et
al. (2016a). We see that we get better results than Liu et
al. (2018) on the average F1 score. The difference is sig-
nificant when we use a neural model for classification on
classes with lower number of positive examples. We made
consistent observation with Liu et al. (2018) when using
GloVe vectors. We found it hard to predict classes with lower
counts of positive examples. However, our in-domain word
embeddings help circumvent this issue by providing mean-
ingful improvement in results. We get a macro F1 of 0.58 on
this class. This further suggests that in-domain word embed-
dings are needed to get improvement in results.

Category Avg F1 | Std Dev
First Party Collection/Use 0.81 0.03
Third Party Sharing/Collection | 0.767 0.04
User Choice Control 0.656 0.09
Data Security 0.75 0.06
Intl and Specific Audiences 0.85 0.05
Access, Edit and Delete 0.658 0.04
Policy Change 0.872 0.04
Data Retention 0.378 0.05

Do Not Track 0.90 0.1

Table 3: Deep convolutional model’s result on the dev set
across different data-practices in the OPP-115 corpus.

Deep Convolutional Model

We also tried deep convolutional models by convolving over
the word embeddings. We used two sets of convolutional
layers , with 200 filters each, but with strides of 3 and 5. We
used Relu non-linearity and Maxpooling operation before
being fed to the next set of these CONV-RELU-MaxPool
Layers. The detailed architecture for our model is shown in
Figure 4.

Although this model generally does better over the base-
lines described by Wilson et al. (2016), in some of the cat-
egories, it fails to capture the meaning when the number of
positive examples are very small. The average macro F1 for
this task was 0.74.

The results of our convolutional model is shown in Ta-
ble 3. It can be seen that our model is very close to the
CBOW model, but does not outperform it as the number
of training examples is fairly low in the OPP-115 corpus.
The simple feed forward network is able to capture the rela-
tionship better as the number of parameters in this model is
orders of magnitude lower than in the deeper model. This is
consistent with the general observation that as the model pa-
rameters increase, one needs more data to get better results.

SoftMax Layer

T
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Figure 4: Deep conv model for segment classification

6 Deep Contextualized Word Embeddings

We also explored the use of contextualized word embed-
dings, using BERT (Devlin et al., 2018), which at the time of
writing is generally considered the state of the art model for
such embeddings. We follow Devlin et al.’s recommendation
and only train the model for 3 epochs.



Category F1

First Party Collection/Use 0.86
Third Party Sharing/Collection | 0.83
User Choice Control 0.74
Data Security 0.78
Intl and Specific Audiences 0.87
Access, Edit and Delete 0.8

Policy Change 0.83
Data Retention 0.36
Do Not Track 0.89

Table 4: BERT model’s test set results across different data-
practices in the OPP-115 corpus.

From Table 4 we see that we get good results on classes
that have a higher number of positive instances. BERT does
not do as well on classes with a lower number of positive in-
stances. This is consistent with the observations across a lot
of NLP tasks such as Question Answering or Natural Lan-
guage Inference, where authors have reported significantly
better results when BERT was used for classification tasks.
It is to be noted that we don’t do any hyper-parameter tuning
with BERT, we just take an off-the-shelf model and train on
the OPP-115 corpus for 3 epochs.

7 Results and Discussions

In this section we try and answer research questions that are
at the intersection of privacy policies and language technolo-
gies.

Do in-domain word embeddings help?

In this section we compare our non contextualized word em-
beddings to the non contextualized generic word embed-
dings. We believe it is not fair to compare our word em-
beddings to BERT, because BERT is not an embedding, but
more of a language model to represent sentences. Here we
focus on evaluating the benefits of non-contextualized in-
domain word embeddings over non-contextualized generic
word embeddings. We use GloVe embeddings (Pennington,
Socher, and Manning, 2014) as our generic embeddings. We
observe from tables 2, 3, 4 and 5 that our in-domain em-
beddings perform better than GloVe in both models. This
comparison intentionally ignores the performance of BERT,
as BERT is a contextualized embedding that represent sen-
tences rather than words.

It is also worth noting that the standard deviation of F1
scores is higher for practices with lower numbers of positive
examples. In this paper, we have report average F1 scores
across the different validation folds, along with their stan-
dard deviations. This is to capture the variability of the F1
score, as one might observe when looking at unseen data.

What should be the dimensionality of privacy
embeddings?

We checked the performance of both the GloVe and our in-
domain embeddings with different settings of the embed-
dings size (100 and 300). As can be seen, the 300 dimen-
sional embeddings performed better than the 100 dimen-

Category Avg F1 | Std Dev
First Party Collection/Use 0.772 0.02
Third Party Sharing/Collection | 0.742 0.01
User Choice Control 0.62 0.07
Data Security 0.82 0.03
Intl and Specific Audiences 0.832 0.04
Access, Edit and Delete 0.721 0.04
Policy Change 0.897 0.07
Data Retention 0.32 0.08
Do Not Track 0.926 0.06

Table 5: F1 score across various categories of the OPP-115
data with CBOW and GloVe Embeddings

Category Avg F1 | Std Dev
First Party Collection/Use 0.795 0.02
Third Party Sharing/Collection | 0.726 0.01
User Choice Control 0.606 0.07
Data Security 0.744 0.05
Intl and Specific Audiences 0.791 0.04
Access, Edit and Delete 0.662 0.04
Policy Change 0.828 0.04
Data Retention 0.286 0.08
Do Not Track 0.85 0.22

Table 6: F1 score across various categories of the OPP-115
data with Deep convolutional model and GloVe embeddings.

Category GloVe-100 FT -100 GloVe-300 FT -300
First Party Collection/Use 0.725 0.801 0.772 0.814
Third Party Sharing/Collection 0.69 0.776 0.742 0.791
User Choice Control 0.528 0.68 0.620 0.692
Data Security 0.76 0.82 0.823 0.838
Intl and Specific Audiences 0.80 0.88 0.832 0.898
Access, Edit and Delete 0.61 0.76 0.721 0.757
Policy Change 0.883 0.915 0.897 0.917
Data Retention 0 0.51 0.32 0.55

Do Not Track 0.909 0.97 0.926 0.949

Table 7: F1 score across various categories of the OPP-115
using the CBOW Model and different dimensional vectors.

sional embeddings. The results of this experiment is pro-
vided in Table 7.

From Table 7, it can be observed that the higher dimen-
sional embeddings tend to give better results over their lower
dimensional counterparts. The higher order dimension takes
longer to train, but since it has more dimensions it can cap-
ture relationships between words in a more expressive fash-
ion.

Performance for different values of the embeddings are
shown in from Table 7. Results presented in earlier tables
are for 300 dimensional embeddings, as these embeddings
performed than the 100 dimensional ones.

Training Data vs. F1 score

We now turn our attention to trying to answer the question
of how many privacy policies are needed to get good embed-
dings for the OPP-115 dataset classification task. For this,
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Figure 5: GloVe Word Vectors Visualization. Please note that
the scale of the image is bigger than the one for FastText. Em-
beddings for words such as (first or third) ’party” and "privacy”,
which are closely related in the privacy domain, appear as fairly
distant with GloVe.

we trained 100 dimensional FastText embeddings using dif-
ferent numbers of privacy policies and looked at the F1 score
across various categories.

05
0.8

07

0.6
0.5

04

Average F1

0.3
0.2
01

0 20000 40000 60000 80000 100000 120000

Number of privacy policies

—a— Average F1 Data Retention First Part Collection And Use

Figure 6: A scatter plot of number of privacy policies used while
training word embeddings and the F1 score it achieved in the
downstream task.

We observe from figure 7 that there is a plateau in the av-
erage F1 score which can be obtained after 20,000 policies.
It is also interesting to note that classes which have higher
positive examples in this dataset, tend to plateau quicker
than the ones which have lower numbers of positive exam-
ples. For example, the “First Party Collection and Use” class
has a lot more positive examples than the “Data Retention”
class. We can see in figure 7 that the “Data Retention” class
also takes a lot more time than the ‘First Party Collection and
Use” to reach the maximum F1 observed using our model.

How do the embeddings look?

After training word embeddings we would want to visual-
ize a how the embeddings look like in the high dimensional
vector space. For this, we take the 300 dimensional embed-
dings which we trained using our policy corpus and project
them onto a 2D space using Principal Component Analysis
(PCA). We compare the result of this projection with GloVe
to see if our domain-specific model captures domain seman-
tics better than GloVe.
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Figure 7: Fast Text Word Vectors visualization. The words pri-
vacy” and “party” have almost overlapped and words such as
“track”, ”cookies” and ’browser” are also closer to one another.

It can be observed in Figure 7 that the privacy related
terms are very closely clustered. In Figure 5 we see that there
is no special semantics for privacy related words. The terms
“food” and “party” are closely related, as that is the more
common case outside of the domain of privacy policies. But
in the Figure 7 “party” is more closely associated with “pri-
vacy” because of the privacy domain-specific concept of
“third-party collection.” The terms “cookies,” “track,” and
“browser” are three words that commonly appear together
in privacy policies. We observe that these words are closely
related in our in-domain vector space. It can also be ob-
served that the terms “data” and “collection” are closer to
each other in our in-domain vector space when compared
to the more general vector space of GloVe. This is because
privacy policies talk about users’ data collection most of the
time.

While anecdotal, these observations suggest that the im-
provement in performance resulting from the use of in-
domain embeddings can be attributed to these embeddings
being able to better capture unique syntactic and semantic
features of privacy policies.

8 Conclusion

In this paper we presented distributed word vector represen-
tations for privacy policies. We showed that in-domain em-
beddings can yield performance improvements on privacy



policy related tasks over the use of generic embeddings such
as GloVe. We reported good F1 scores across different data
practice categories using our domain specific embeddings.
We also showed both quantitatively and qualitatively that
our in-domain word embeddings help improve performance
of privacy policy segment labeling tasks on the OPP-115
corpus of privacy policies.
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